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* Chapter 9
Sediment Transport Mechanics

Section I
Introduction

9-1. Definition

Sedimentation embodies the processes of erosion, entrain-
ment, transportation, deposition, and compaction of sedi-
ment. These are natural processes that have been active
throughout geological times and have shaped the present
landscape of our world. The principal external dynamic
agents of sedimentation are water, wind, gravity, and ice.
Although each may be important locally, only hydrody-
namic forces are considered herein. Transport functions,
as typified by Einstein (1950), treat only the “transporta-
tion” process.

9-2. Topics Beyond the Material Presented in
This Chapter

a. Local scour/deposition.Local scour, as compared
to general erosion/deposition, refers to the scour hole that
forms around a bridge pier or downstream from a hydrau-
lic structure or along the outside of a bend, etc. It
involves fluid forces from multidimensional flow accelera-
tions, pressure fluctuations, and gravity forces on the
sediment particles. The complexity of local scour pro-
cesses relegates analysis to empirical equations or physi-
cal model studies. This chapter does not address local
scour.

b. Cohesive sedimentation theory.The concept of
the equilibrium condition does not apply to cohesive
sediment transport as it does to noncohesive sediment
transport. That is, in noncohesive sediment transport,
there is a continual exchange of sediment particles
between the water column and the bed surface. The
equilibrium condition exists when the same number of a
given type and size of particles are deposited on the bed
as are entrained from it. That exchange process does not
exist in cohesive sediment movement. Particle inertia due
to its mass is insignificant in cohesive sedimentation
problems in rivers. The dominant forces preventing cohe-
sive particles from being eroded are electrochemical
forces. That is, when cohesive particles come in contact
with the bed, they are likely to adhere to it and resist re-
entrainment. Deposition rates depend on flocculation of
cohesive particles in suspension. There are analytical
techniques for calculating the erosion, entrainment,

transportation, deposition, and consolidation of cohesive
sediments. However, it is a basic requirement to develop
site-specific sediment properties from testing samples.
Two fundamental properties are: (1) the shear stress for
the initiation of erosion and deposition, and (2) the ero-
sion rate. The erosion/deposition shear stresses are called
erosion and deposition thresholds. Erosion rate is
expressed as a function of bed shear stress. These rela-
tionships are needed for the full range of hydraulic condi-
tions expected at the site. Finally, settling velocities are
needed.

Section II
Initiation of Motion

9-3. General

Thresholds for particle erosion can be calculated, using
average values for hydraulic parameters, if the fluid and
sediment properties are known. The significant fluid
properties are specific weight and viscosity. Significant
sediment properties are particle size, shape, specific grav-
ity, and position in the matrix of surrounding particles. In
the case of cohesive particles the electrochemical bonds,
related primarily to mineralogy, are the most significant
sediment properties. Significant hydraulic forces are bed
shear stress, lift, pressure fluctuations related to turbu-
lence, and impact from other particles.

9-4. Shields Parameter

Although velocity has been used historically for predicting
whether or not a particle will erode, Shields relationship
between dimensionless shear stress (or Shields parameter),
τ*, and grain Reynolds number,R*, is now recognized as
a more reliable predictor. Shields parameter and grain
Reynolds number are dimensionless, so that any consistent
units of measurement may be used in their calculation.
Although the experimental work and analysis were per-
formed by Shields, the curve termed the Shields Curve,
which is shown in Figure 9-1, was actually proposed by
Rouse (ASCE 1975). Shields curve may be expressed as
an equation, which is useful for computer programming.

(9-1)τ = 0.22 β 0.06 × 107.7β

(9-2)
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Figure 9-1. Shields curve (ASCE 1975)

where

τo = bed shear stress

γs = particle specific weight

γ = fluid specific weight

ν = kinematic viscosity of the fluid

g = acceleration of gravity

d = particle diameter

u* = shear velocity = (gRS)0.5

R = hydraulic radius

S = slope

The critical shear stress,τc, for stability of a particle hav-
ing a diameter,d is then calculated from the following
equation:

(9-3)τc = τ (γs γ)d

9-5. Adjusted Shields Parameter

Shields obtained his critical values forτ* experimentally,
using uniform bed material, and measuring sediment
transport at decreasing levels of bed shear stress and then
extrapolating to zero transport. There are three problems
associated with the critical dimensionless shear stress as
determined by Shields. First, the procedure did not
account for the bed forms that developed with sediment
transport. A portion of the total shear is required to over-
come the bed form roughness; therefore the calculated
dimensionless shear stress was too high. Gessler (1971)
reanalyzed Shields’ data so that the critical Shields param-
eter represented only the grain shear stress which deter-
mines sediment transport and entrainment (Figure 9-2).
Secondly, the critical dimensionless shear stress is based
on the average sediment transport of numerous particles
and does not account for the sporadic entrainment of
individual particles at very low shear stresses. This
becomes very important when transport of gravels and
cobbles is of interest in low energy environments, and in
the design of armor protection. This phenomenon was
demonstrated by Paintal (1971) and is shown in Figure 9-
3. Note that the extrapolated critical dimensionless shear

*
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Figure 9-2. Shields diagram (Gessler 1971)

Figure 9-3. Determination of critical shear stress (Paintal 1971)

stress was about 0.05, but the actual critical dimensionless
shear stress was 0.03. Thirdly, critical dimensionless
shear stress for particles in a sediment mixture may be
different from that for the same size particle in a uniform
bed material. Meyer-Peter and Muller (1948) and Gessler
(1971) determined from their data sets that the critical
Shields parameter for sediment mixtures was about 0.047.

Neill (1968) determined, from his data, that in gravel
mixtures, most of the particles become mobile whenτ* for
the median grain size was 0.030. Andrews (1983) found
a slight difference inτ*, for different grain sizes in a
mixture, and presented the following equation:

*
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(9-4)τ i = 0.0834











di

d50

0.872

where the subscript,i, indicates the Shields parameter
value for size classi, and d50 is the median diameter of
the subsurface material. The minimum value forτ*i was
found to be 0.020. According to Andrews, the critical
shear stress for individual particles has a very small
range; therefore, the entire bed becomes mobilized at
nearly the same shear stress.

9-6. Gessler’s Concept for Particle Stability

a. Critical shear stress is difficult to define because
at low shear stresses entrainment is sporadic, caused by
bursts of turbulence. It is even more difficult to define
for particles in a coarse surface layer because the critical
shear stress of one size class is affected by the presences
of other size classes. Gessler (1971) developed a probabi-
listic approach to the initiation of motion for sediment
mixtures. He reasoned that due to the random orientation
of grains on the bed and the random strength of turbu-
lence on the bed, for a given set of hydraulic conditions,
part of the grains of a given size will move while others
of the same size may remain in place. Gessler assumed
that the critical Shields parameter represents an average
condition, where about half the grains of a uniform mate-
rial remain stable and half move. It follows then that
when the critical shear stress was equal to the bed shear
stress there was a 50 percent chance for a given particle
to move. Using experimental flume data, he developed a
probability function,p, dependent onτc/τ whereτc varied
with bed size class (Figure 9-4). He determined that the
probability function had a normal distribution and that the
standard deviation (slope of the probability curve) was a
function primarily of turbulence intensity and equal to
0.057. Gessler found the effect of grain-size orientation
to be negligible. The standard deviation also accounts for
hiding effects, i.e. no attempt was made to separate hiding
from the overall process. Gessler’s analysis demonstrates
that there can be entrainment of particles even when the
applied shear stress is less than the critical shear stress,
and that not all the particles of a given size class on the
bed will necessarily be entrained until the applied shear
stress exceeds the critical shear stress by a factor of 2.

b. Gessler suggested that the mean value of the
probabilities for the bed surface to stay should be a good
indicator of stability:

(9-5)P =
⌡
⌠
imax

imin

P 2 fi di

⌡
⌠
imax

imin

P fi di

Where p is the probability function for the mixture and
depends on the frequency of all grain sizes in the underly-
ing material, andfi is the fraction of grain sizei. Gessler
suggested that whenp > 0.65 that the surface layer of the
bed would be unstable.

9-7. Grain Shear Stress

a. The total bed shear stress may be divided into
that acting on the grains and that acting on the bed forms.
Entrainment and sediment transport are a function only of
the grain shear stress. Grain shear stress thus must be
determined in order to make sediment transport calcula-
tions. Einstein (1950) determined that the grain shear
stress could best be determined by separating total bed
shear stress into a grain component and a form component
which are additive. The equation for total bed shear
stress is:

(9-6)τo = τ τ = γRS

where

τo = total bed shear stress

τ′ = grain shear stress

τ″ = form shear stress

b. Einstein (1950) also suggested that the hydraulic
radius could be divided into grain and form components
that are additive. The equations for grain and form shear
stress then become

(9-7)
τ = γR S

τ = γR S

*
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Figure 9-4. Probability of grains to stay (Gessler 1971)

where R′ and R″ are hydraulic radii associated with the
grain and form roughness, respectively. The total bed
shear stress can be expressed as

(9-8)τo = γR S γR S

Slope and the specific weight of water are constant, so
that the solution becomes one of solving for one of theR
components. The Limerinos (1970) equation can be used
to calculate the grain roughness component.

(9-9)

V

U
= 3.28 5.66Log10

R
d84

U = gR S

whereV is the average velocity andd84 is the particle size
for which 84 percent of the sediment mixture is finer.

Limerinos developed his equation using data from gravel-
bed streams. Limerinos’ hydraulics radii ranged between
1 and 6 ft; d84 ranged between 1.5 and 250 mm. This
equation was confirmed for sand-bed streams without bed
forms by Burkham and Dawdy (1976). The equation can
be solved iteratively when average velocity, slope, andd84

are known.

9-8. Bed-Form Shear Stress

Einstein and Barbarossa (1952) used data from several
sand-bed streams to develop an empirical relationship
between bed form shear velocity and a
dimensionlesssediment mobility parameter,Ψ′. The
relationship is shown in Figure 9-5.

*
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Figure 9-5. Bar resistance curve (Einstein and Barbarossa 1952)

(9-10)Ψ =










γs γ
γ

d35

R S

whered35 is the particle size for which 35 percent of the
sediment mixture is finer.R″ can be solved for directly
using the following equation:

(9-11)R =
(U )

2

g S

Typically, either the grain or form hydraulic radius is
calculated directly, and the other hydraulic radius compo-
nent is determined to be the difference between the total
hydraulic radius and the calculated component.

9-9. Bank or Wall Shear Stress

Whenever the streambanks contribute significantly to the
total roughness of the stream, the shear stress contributing
to sediment transport must be further reduced. This is
accomplished using the side-wall correction procedure
which separates total roughness into bed and bank rough-
ness and conceptually divides the cross-sectional area into
additive components. The procedure is based on the

assumption that the average velocity and energy gradient
are the same in all segments of the cross section.

(9-12)Atotal = Ab Aw

Atotal = PbRb PwRw

where A is cross-sectional area,P is perimeter, and sub-
scripts b and w are associated with the bed and wall (or
banks), respectively. Note that the hydraulic radius is not
additive with this formulation as it was withR′ and R″.
Using the Manning equation, with a known average veloc-
ity, slope, and roughness coefficient, the hydraulic radius
associated with the banks can be calculated:

(9-13)V

1.486 S1/2
= R2/3

n
=

R2/3
w

nw

(9-14)Rw =










nw

V

1.486 S1/2

3/2

where velocity is in feet per second andR is in feet. The
side-wall correction procedure is outlined using the

*
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* Darcy-Weisbach equation inSedimentation Engineering
(ASCE 1975, pp 152-154). Total hydraulic radius and
shear stress considering grain, form, and bank roughness
can be expressed by the following:

(9-15)Rtotal =
Pb(R R ) PwRw

Ptotal

(9-16)τtotal = γS










Pb(R R ) Pw Rw

Ptotal

Section III
Stage-Discharge Predictors

9-10. General

There are several stage-discharge predictors that have
been developed for alluvial channels and these are pre-
sented in Sedimentation Engineering (ASCE 1975,
pp 126-152). The Limerinos (1970) equation is suggested
as a stage-discharge predictor for gravel-bed streams. The
Einstein-Barbarossa (1952) method was the first stage-
discharge predictor to account for variability in stage due
to bed-form roughness by calculating separate hydraulic
radii for grain and form contributions. More recently,
Brownlie (1981) developed regression equations to calcu-
late a hydraulic radius that accounts for both grain and
form roughness in sand-bed streams.

9-11. Brownlie Approach

a. Database. Brownlie’s resistance equations are
based on about 1000 records from 31 flume and field data
sets. The data were carefully analyzed for accuracy and
consistency by Brownlie. The resistance equations
account for both grain and form roughness, but not bank
roughness. The data covered a wide range of conditions:
grain size varied between 0.088 and 2.8 mm, and depth
ranged between 0.025 and 17 m. All of the data had
width-to-depth ratios greater than 4, and the gradation
coefficients of the bed material were equal to or less than
5.

b. Regression equations. Brownlie developed sepa-
rate resistance equations for upper and lower regime flow.
The equations are dimensionless, and can be used with
any consistent set of units.

Upper Regime:

(9-17)Rb = 0.2836 d50 q 0.6248 S 0.2877 σ0.0813

Lower Regime:

(9-18)Rb = 0.3742d50 q 0.6539 S 0.2542 σO.1050

where

(9-19)q = V D

g d3
50

Rb = hydraulic radius associated with the bed

d50 = median grain size

S = slope

σ = geometric bed material gradation coefficient

V = average velocity

D = water depth

g = acceleration of gravity

* To determine if upper or lower regime flow exists for
a given set of hydraulic conditions, a grain Froude num-
ber, Fg, and a variable,Fg′, were defined by Brownlie:

(9-20)
Fg = V

g d50











γs γ
γ

(9-21)Fg = 1.74

S0.3333

According to Brownlie, upper regime flow occurs ifS >
0.006 or if Fg > 1.25 Fg′, and lower regime flow occurs
if Fg < 0.8 Fg′. Between these limits is the transition
zone.

Section IV
Bed-Load Transport *
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* 9-12. General

Bedload is defined as sediment moving on or near the bed
by sliding, rolling, or jumping. Any particle size can
move as bed load, depending on hydraulic forces.

9-13. DuBoys’ Concept of Bed Load

Between 1879 and 1942 much of the work in sediment
transport was influenced by DuBoys. He proposed the
idea of a bed shear stress and visualized a process by
which the bed material moved in layers. The significant
assumptions in the DuBoys approach were that sediment
transport could be calculated using average cross-section
hydraulic parameters and that transport was primarily a
function of the excess shear stress; i.e., the difference
between hydraulically applied shear stress and the critical
shear stress of the bed material. The general form of the
DuBoys equation is

(9-22)qB = Kτo(τo τc)
m

where

qB = bed-load transport rate in weight per unit
time per unit width

τo = hydraulically applied shear stress

τc = critical, or threshold shear stress, for the
initiation of movement

K andm = constants

The functional relationship betweenK, τc, and grain size
was determined experimentally and is presented inSedi-
mentation Engineering (ASCE 1975, p 191). In
DuBoys’ equationm = 1.0. No movement occurs until
the bed shear stress exceeds the critical value.

9-14. Einstein’s Concept of Particle Movement

A major change in the approach to predicting sediment
transport was proposed by Einstein (1950) when he pre-
sented a bed-load formula based on probability concepts
in which the grains were assumed to move in steps of
average length proportional to the sediment size. He
describes bed-material transportation as follows:

“The least complicated case of bed-load movement
occurs when a bed consists only of uniform

sediment. Here, the transport is fully defined by
a rate. Whenever the bed consists of a mixture
the transport must be given by a rate and a
mechanical analysis or by an entire curve of
transport against sediment size. For many years
this fact was neglected and the assumption was
made that the mechanical analysis of transport is
identical with that of the bed. This assumption
was based on observation of cases where actually
the entire bed mixture moved as a unit. With a
larger range of grain diameters in the bed, how-
ever, and especially when part of the material
composing the bed is of a size that goes into
suspension, this assumption becomes untenable.”

“The mechanical analysis of the material in
transport is basically different from that of the
bed. This variation of the mechanical analysis
will be described by simply expressing in mathe-
matical form the fact that the motion of a bed
particle depends only on the flow and its own
ability to move, and not on the motion of any
other particles.” (Einstein 1950).

a. Equilibrium condition. Einstein’s hypothesis that
motion of a bed particle depends only on the flow and its
own ability to move and not on the motion of any other
particles allowed him to describe the equilibrium condi-
tion for bed-material transportation mathematically as two
independent processes: deposition and erosion. He
proposed an “equilibrium” condition and defined it as the
condition existing when the same number of a given type
and size of particles must be deposited in the bed as are
scoured from it.

b. Bed-load equation.In Einstein’s formulation for
bed-load transport, he determined the probability of a
particle being eroded from the bed,p, to be

(9-23)

p
1 p

= A Φi

Φi =
iB

ib

qB

γs











γ
γs γ

1/2










1

gd3
i

1/2

where

A* = constant

Φi* = bed-load parameter for size class i *

9-8



EM 1110-2-4000
Change 1
31 Oct 95

* iB = fraction of size class i in the bed-load

ib = fraction of size class i in the bed material

qB = bed-load transport in weight per unit time and
width

di = grain diameter of size class i

He then reasoned that the dynamic lift forces on a particle
are greater than particle weight when the probability to go
into motion is greater than unity. Assuming a normal
distribution for the probability of motion yields

(9-24)

p = 1 1

π ⌡
⌠
η

ηo

e t 2

dt

ηo = B Ψi 2.0

η = B Ψi 2.0

where

B* = a constant

Ψi* = dimensionless flow intensity parameter

t = variable of integration

Ψi* is a function of grain size, hydraulic radius, slope,
specific weight, and viscosity. Correction factors are
applied to account for hiding and pressure variations due
to the composition of the bed-material mixture. Setting
the probability of erosion equal to the probability of
motion yields the Einstein bed-load function

(9-25)1 1

π ⌡
⌠
η

ηo

e t 2

dt = A Φ
1 A Φ

The equation can be transformed into the following and
solved for sediment transport rate,qB

(9-26)
iBqB = ib Φ γs di gdi











γs γ
γ

whereΦ* is a function ofΨ* which is determined using
empirically derived graphs provided by Einstein (1950) or
ASCE (1975, pp 195-200).

c. Limitations. The dependence of the Einstein
method on these empirical graphs, which were derived
from limited data, limits the applicability of the method.
The important contributions of this work were the intro-
duction of the probability concept for bed-load movement,
the identification of processes influencing entrainment and
transport of sediment mixtures, and a formulation of the
interactions. Einstein was aware of the limitations of his
method and did not intend that it should be considered as
a universal one.

Section V
Suspended Sediment Transport

9-15. Concentration Equation

The most important process in maintaining sediment in
suspension is flow turbulence. In steady turbulent flow,
velocity at any given point will fluctuate in both magni-
tude and direction. Turbulence is greatest near the bound-
ary where velocity changes are the greatest. When dye is
injected instantaneously at a point in a turbulent flow
field, the cloud will expand as it is carried downstream at
the mean velocity. This process is called diffusion and is
the basis for the analytical description of sediment suspen-
sion. The one-dimensional sediment diffusion equation
balances the upward flow of sediment due to diffusion
with the settling of the sediment due to its weight

(9-27)C ω εs

∂C
∂y

= 0

where

C = sediment concentration

ω = settling velocity

εs = sediment diffusion coefficient

y = depth

*
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* For boundary roughness dominated flows, it is common
practice to assume that the sediment diffusion coefficient
is equal to the momentum diffusion coefficient,εm, which
can be described by

(9-28)εs = εm = κ U
y
D

(D y)

where

κ = Von Karman constant

U* = shear velocity

D = total water depth

Integration yields the Rouse equation:

(9-29)
Cy

Ca

= 







D y
y

a
D a

z

(9-30)z = ω
κ U

where

a = reference elevation

Ca = concentration at reference elevation

Cy = concentration at depth y

The equation gives the concentration in terms ofCa ,
which is the concentration at some arbitrary levely = a.
This requires foreknowledge of the concentration at some
point in the vertical. Typically, this point is assumed to
be close to the bed andCa is assumed to be equal to the
bed-load concentration. One problem with this equation is
that concentration approaches infinity as y approaches
zero. Therefore, the equation cannot be used to calculate
the total sediment load from the bed to the surface. A
graph of the Rouse suspended load distribution equation is
shown in Figure 9-6.

9-16. Suspended Sediment Discharge

Suspended sediment discharge is calculated from the
concentration profile using the following equation:

(9-31)qs = ⌡
⌠
D

y=yo

Cyu dy

where u is the local velocity. Solution of this equation
requires an analytical description of the vertical velocity
distribution.

a. Einstein’s approach. Einstein (1950) assigned
the lower limit of integration,yo = 2di, and called this the
thickness of the bed layer. He assumed thatCa was equal
to the bed-load concentration. He used Keulegan’s loga-
rithmic velocity distribution equations to determine veloc-
ity. Since this work was done prior to the common usage
of computer, Einstein prepared tables for the solution of
the integral. These are found in Einstein (1950) and
ASCE (1975) as well as other sediment transport texts.
Total sediment transport can be calculated as a function of
the bed-load concentration. The equation for total bed-
material transport for particle sizei is

(9-32)qi = qBi qsi

(9-33)
qBi = ib Φ i γsdi gdi











γsγ
γ

(9-34)
qsi = ib Cai ⌡

⌠ D

y=yo









D y
y

a
D a

z

u 5.75 log 







30.2y
∆

dy

where

a = thickness of the bed-load layer (Einstein con-
sidereda = 2di)

Ca = concentration in bed-load layer

di = geometric mean of particle diameters in each
size classi

*
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Figure 9-6. Rouse’s suspended sediment concentration distribution for a/D = 0.5 and several values of z (ASCE
1975, p 77)

D = flow depth, bed to water surface

i = size class interval number

ib = fraction of size classi in the bed

κ = von Karman constant = 0.4 in clear water

qi = unit total bed material load in size classi

qsi = unit suspended bed material load in size
classi

qBi = unit bed-load in size classi

y = any point in the flow depth measured above
the bed

z = slope of the concentration distribution
(ωi/κu*)

u* = bed shear velocity

ωi = settling velocity for grains of sediment in
class intervali

∆ = apparent grain roughness diameter of bed surface

The total unit sediment discharge of the bed-material load
is the sum of discharges for all particle sizes in the bed.

(9-35)qs = ΣN
1qsi

wheren = number of size classes

b. Brooks approach.Brooks (1965) developed a graph
that can be used to calculate suspended sediment transport
if the sediment concentration at middepth is known. Using
the Rouse equation, Brooks assigneda = 0.5 D. The lower
limit of integration,yo, was determined to be the depth where
u = 0. Brooks used a power law velocity distribution equa-
tion and numerical integration to develop the curve shown
in Figure 9-7. This figure can be used to determine total sus-
pended sediment concentration when the concentration at
middepth, the average velocityV, and the shear velocityU*
are known.

Section VI
Selecting a Sediment Transport Function

*
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Figure 9-7. Brooks curve for suspended sediment concentration (ASCE 1975)

9-17. General

Most sediment transport functions predict a rate of sedi-
ment transport for a given set of steady-state hydraulic
and bed-material conditions. Typically, hydraulic vari-
ables are laterally averaged. Some sediment transport
equations were developed for calculation of bed load only,
and others were developed for calculation of total bed
material load. This distinction can be critical in sand-bed
streams, where the suspended bed-material load may be
orders of magnitude greater than the bed load. Another
important difference in sediment transport functions is the
manner in which grain size is treated. Most sediment
transport functions were developed as single-grain-size
functions, usually using the median bed-material size to
represent the total bed. Single-grain-size functions are
most appropriate in cases where equilibrium sediment
transport can be assumed, i.e. when the project will not
significantly change the existing hydraulic or sediment
conditions. When the purpose of the sediment study is to
evaluate the effect of a project on sediment transport
characteristics (i.e., the project, or a flood, will introduce
nonequilibrium conditions), then a multiple-grain-size
sediment transport equation should be used. Multiple-
grain-size functions are very sensitive to the grain-size
distribution of the bed material. Extreme care must be
exercised in order to ensure that the fine component of

the bed-material gradation is representative of the bed
surface for the specified discharge. This is very difficult
without measured data. For this reason Einstein (1950)
recommended ignoring the finest 10 percent of the bed
material sample for computation of bed-material load with
a multiple-grain-size function. Frequently, single-grain-
size functions are converted to multiple-grain-size
functions simply by calculating sediment transport using
geometric mean diameters for each size class in the bed
(sediment transport potential) and then assuming that
transport of that size class (sediment transport capacity)
can be obtained by multiplying the sediment transport
potential by the bed fraction. This assumes that each size
class fraction in the bed acts independent of other size
classes on the bed, thus ignoring the effects of hiding,
which can produce unreliable results.

9-18. Testing

It is important to test the predictive capability of a sedi-
ment transport equation against measured data in the
project stream or in a similar stream before its adoption
for use in a sediment study. Different functions were
developed from different sets of field and laboratory data
and are better suited to some applications than others.
Different functions may give widely differing results for a

*
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* specified channel. Experience with sediment discharge
formulas can be summed up in Figure 9-8.

9-19. Sediment Transport Equations

A generalized sediment transport equation can be pre-
sented in a functional form:

(9-36)Qs = f(V,D,Se ,B,de ,ρs ,Gsf ,ds ,ib ,ρ ,T)

where

B = effective width of flow

D = effective depth of flow

de = effective particle diameter of the mixture

ds = geometric mean of particle diameters in each
size classi

Qs = total bed material discharge rate in units of
weight divided by time

Gsf = grain shape factor

ib = percentage of particles of the ith size class
that are found in the bed expressed as a
fraction

Se = slope of energy line

*

Figure 9-8. Sediment discharge rating curve, Colorado River (ASCE 1975)

9-13



EM 1110-2-4000
Change 1
31 Oct 95

* ρ = density of fluid for other than temperature
effect

ρs = density of sediment particles

T = water temperature

V = average flow velocity

Of particular interest are the groupings of terms: hydrau-
lic parameters (V,D,Se,B), sediment particle parameters
(de,ρs,Gsf), sediment mixture parameters (ds, ib), and fluid
properties (ρ, T).

a. Processes. Although Einstein’s (1950) work is
classic and presents a complete view of the processes of
equilibrium sediment transportation, it is more useful for
understanding those processes than for application. Many
other researchers have contributed sediment transport
functions - always attempting to arrive at one which is
always dependable when compared against field data.
The choices are too numerous to name, and yet no single
function has been proved superior to the others for the
general case. The following general guidelines are given
to aid in the selection of a transport function. However, it
is important to confirm the selection using data from the
project site. In the absence of such confirmation, the
scatter between calculated values, similar to that shown in
Figure 9-8, may be used in establishing a sensitivity range
or a risk and uncertainty factor.

b. Colby (1964). The Colby equation has been used
successfully on a limited class of shallow sand-bed
streams with high sediment transport. The Colby function
was developed as a single-grain-size function for both bed
load and suspended bed-material load. Its unique feature
is a correction factor for very high fine sediment concen-
trations. This correction factor may be used with other
sediment transport equations and has been incorporated
into the HEC-6 numerical model where it is used with all
sediment-transport equations.

c. Einstein (1950). The Einstein equation has appli-
cation for both sand and gravel bed streams. It is a multi-
ple-grain-size sediment transport function that calculates
both bed-load and suspended bed-material load. The
hiding factor in the original equation has been modified
by several investigators (Einstein and Chien 1953; Pem-
berton 1972; and Shen and Lu 1983) to improve perfor-
mance on specific studies.

d. Laursen-Madden (Madden 1993). The Laursen
(1958) sediment transport equation, which was based on
flume data, was modified by Madden in 1963 based on
data from the Arkansas River and again in 1985 using
additional data from other sand-bed rivers. The equation
calculates both bed-load and suspended bed-material load.
It is a multiple-grain-size function, but it does not have a
hiding factor. This feature makes its application in
streams with a wide range of grain sizes questionable.
The 1963 equation has been used successfully on large
and intermediate size sand-bed rivers. The newer equa-
tion should be applicable in stream channels having sizes
from sand to medium gravels.

e. Meyer-Peter and Muller (1948).This equation
was developed from flume data and was developed as a
multi-grain-size function, although it is frequently applied
as a single-grain-size function. Sediment was transported
as bed load in the Meyer-Peter and Muller flume. Its
applicability is for bed-load transport in gravel-bed
streams. It has been found to significantly underestimate
transport of larger gravel sizes in several studies.

f. Toffaleti (1968). This multiple-grain-size func-
tion has been successfully used on many large sand-bed
rivers. It calculates both bed load and bed-material sus-
pended load and is based on extensive sand-bed river and
flume data. Its formulation follows that of Einstein; how-
ever, there are significant differences. The Toffaleti equa-
tion generally underestimates the transport of gravel size
classes. However, it has been combined with the Meyer-
Peter and Muller equation in HEC-6 and SAM to provide
an equation with more potential to transport a wider range
of size classes.

g. Yang (1973, 1984). Yang developed two regres-
sion equations, one for sand and one for gravel, from
extensive measured data on a wide variety of streams.
This is a single-grain-size equation, and when applied as a
multiple-grain-size function in HEC-6 or SAM it is done
so without a hiding factor. The function is not as sensi-
tive to grain size as other functions and, therefore, is less
likely to produce wide variations in calculated sediment
transport. It is most applicable to intermediate to small
sand bed streams with primarily medium to coarse sand
beds. It would not be appropriate if significant armoring
or hydraulic sorting of the bed is expected.

*
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* 9-20. Guidance Program in SAM

A guidance module was included in the SAM hydraulic
design package to aid in the selection of a sediment
transport function. The significant hydraulic and sediment
variables of slope, velocity, width, depth, and median
grain size applicable to a given stream are provided to the
computer program. The program then checks the given
data against 17 sets of field data collected by Brownlie
(1983) and looks for a river with similar characteristics.
Ten sediment transport equations were tested with each of
the 17 data sets and the best three were determined. The
program then reports to the user which are the three best
sediment transport equations for each of the data sets with
hydraulic characteristics that matched the given stream.

9-21. Procedure for Calculating Sediment-
Discharge Rating Curve

The steps in calculating a sediment-discharge rating curve
from the bed-material gradation are:

a. Assemble field data (cross sections and bed
gradations).

b. Develop representative values for hydraulic vari-
ables and for bed gradation from the field measurements.

c. Calculate the stage-discharge rating curve
accounting for possible regime shifts due to bed-form
change.

d. Calculate the bed-material sediment-discharge
rating curve using hydraulic parameters from the
stage-discharge calculation.
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